FANDOM



GénéralitésModifier

DéfinitionModifier

Soit un triangle ABC. La droite de Simson (ou Wallace Simson) est la droite passant pas les 3 points F, G, H qui sont les projection orthogonale d’un point D du cercle circo
Droites Wallace Simson.ggb

Droite de Simson

nscrit sur respectivement AB, AC et BC.

En effet, F, G et H sont alignés. C’est là une caractéristique très intéressante que nous démontrons plus loin dans cet article.

PropriétésModifier

Les droites de Wallace Simson offrent de multiples propriétés. En voici quelques une.

On remarque que lorsque le point D est confondu avec un des sommets du triangle, alors la droite de Wallace Simson est tout simplement la hauteur du triangle en ce même sommet.

Soit H l’orthocentre du triangle ABC, alors la droite de Wallace Simson issue du point D coupe le segment DH en son milieu.

Soient D et E deux points du cercle circonscrit diamétralement opposés. Alors, leur droite de W S sont perpendiculaire et leur point d’intersection se trouve sur le cercle des 9 points du triangle.

Les côtés du triangle ABC sont des droites de WS de ABC.

Les droites de Wallace Simson de tous les points du cercle circonscrit enveloppent une deltoïde dite deltoïde de Steiner[1]. C’est une hypocycloïde à 3 rebroussements.

Les côtés du triangle ABC sont tangent à la deltoïde.

Le cercle des 9 points du triangle sont inscrits à la deltoïde. Le centre de la deltoïde est le centre du cercle des 9 points.

L’aire de la deltoïde est égale à la moitié de l’aire du cercle circonscrit au triangle.

Théorème de Wallace et sa généralisationModifier

Les projections orthogonales d’un point D du plan sur les trois côtés d’un triangle sont alignées si et seulement si D est sur le cercle circonscrit au triangle.

Généralisation : soit D un point du cercle circonscrit au triangle ABC. Si, de ce point D on trace 3 droites faisant chacune le même angle θ avec respectivement AB, AC et BC, alors les points d’intersection de ces droites avec les côtés du triangle sont alignés.

DémonstrationsModifier

A venir

NotesModifier

  1. Pour plus de détails, voir sur le site Mathcurve [1]

Interférence d'un bloqueur de publicité détectée !


Wikia est un site gratuit qui compte sur les revenus de la publicité. L'expérience des lecteurs utilisant des bloqueurs de publicité est différente

Wikia n'est pas accessible si vous avez fait d'autres modifications. Supprimez les règles personnalisées de votre bloqueur de publicité, et la page se chargera comme prévu.

Sur le réseau FANDOM

Wiki au hasard